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relative to the local lattice vector. It then gives a 
measure of the crystal-grain size or the distance 
between points in the crystal that scatter the X-rays. 

It is likely that the major influence on this model 
is the kinematic assumption, which will fail for thicker 
films when the extinction of the transmitted beam is 
important. This means that the reflectance becomes 
large and the quadratic term in (1) cannot be neglec- 
ted. In such instances, dynamical models (Kato, 1980; 
Becker & A1 Haddad, 1990; Davis, 1991) must be 
used. 

Concluding remarks 

A stochastic model for crystal defects has been 
developed that leads to a correlation function that is 
used to calculate the reflectivity of imperfect crystals 
containing defect planes and crystal grains. A solution 
for the kinematical reflectivity has been given involv- 
ing a convolution between the perfect-crystal reflec- 
tivity and a function depending on two parameters 
related to the crystal defects. This function takes the 
limiting form of a Gaussian or a Lorentzian function 
depending on a correlation length. In a subsequent 
paper, the fit of this kinematic solution to experi- 
mental data will be discussed. The defect model has 
been incorporated previously in a model for dynami- 
cal X-ray diffraction that loads to a partial differential 
equation for a probability density describing the crys- 
tal reflectance (Davis, 1991). 

The author wishes to acknowledge sponsorship 
from the Australian National Research Fellowship 
Scheme and to thank Dr S. W. Wilkins for his helpful 
comments concerning the manuscript. 
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Abstract 

Five basic cubic packings of symmetry-related cylin- 
ders are described. Four are stable packings and two 
were described by O'Keeffe & Andersson [Acta Cryst. 
(1977). A33, 914-923]. The possible symmetries of 
rods that can replace the cylinders in crystal structures 
are identified. Replacing cylinders by bundles of 
cylinders produces a total of 23 cubic cylinder pack- 
ings, of which 18 are stable. 

Introduction 

The study of packings of objects such as spheres or 
polyhedra (representing atoms or groups of atoms) 

0108-7673/92/060879-06506.00 

has played an essential role in descriptive crystal 
chemistry for a long time. More recently, packings 
of cylinders (representing rods of atoms) have been 
used similarly. Some cylinder p~tckings and their 
applications to crystal chemistry were described by 
O'Keeffe & Andersson (1977) - hereinafter O K A -  
who described eight packings. The term cylinder 
packing is used here to refer to infinite packings of 
cylinders in which every cylinder is related to all the 
others by crystallographic symmetry operations. Two 
cubic packings were found to be particularly useful 
in descriptive crystal chemistry when the cylinders 
were replaced by rods of atoms. These packings were 
referred to as 'body-centered cubic rod packing' and 
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880 CUBIC CYLINDER PACKINGS 

'primitive cubic rod packing'; here they are named 
after structures in which they are a particularly con- 
spicuous feature, namely garnet (Andersson & 
O'Keeffe, 1977) and/3-W, respectively. In the garnet 
packing the rod axes lie on four nonintersecting three- 
fold symmetry axes; in the/3-W packing the rod axes 
lie on three nonintersecting fourfold symmetry axes. 

The cubic /3-manganese structure (Shoemaker, 
Shoemaker, Hopkins & Yindepit, 1978) was described 
by OKA as a garnet packing of rods of metaprisms 
and tetrahedra aligned along the four nonintersecting 
threefold axes of P4132. Recently, Nyman, Carroll & 
Hyde (1991) have shown that a particularly appealing 
alternative description of the same structure is as a 
packing of rods of face-sharing tetrahedra packed 
with rod axes along nonintersecting 41 axes. In both 
instances all the atoms in the crystal lie on the corres- 
ponding rods. The cylinder packing corresponding to 
the rod packing in the description of Nyman et al. 
(1991) was not in the compilation of OKA and is 
described here together with two new cubic packings 
with cylinders on four nonintersecting 31,2 axes. 

The location of cylinder axes is most readily 
specified as the line of intersection of two planes. The 
line of intersection of planes x = x0, y = Yo is written 
as Xo, Yo, u where u can take any value. Likewise, 
~+ u, 2+ u, u indicates the line of intersection of x = 
z + ½ a n d  y = z +  2. 

In deriving crystal structures the cylinders must be 
replaced by rods of atoms and it is useful to know 
the rod symmetries. These are given using con- 
ventional crystallographic symbols (Shubnikov & 
Koptsik, 1974) with p representing the one-dimen- 
sional lattice with translations along c. The reader 
unfamiliar with rod-symmetry groups can find a good 
introduction in Smith (1982). 

The fl-Mn cylinder packing 

The packing of cylinders corresponding to the 
description by Nyman et al. (1991) of the /3-Mn 
structure is succinctly described as: space group 

3 ½; I4132, cylinder axes ¼, 0, u; 3,½, u; u,~, 0; u, 4, 
0, u,~; ½, u, 3. These are derived from the general 
positions 48(/) of I4~32 by the substitution x = ¼, y = 
0, z = u. For cylinders of unit diameter the cell edge 
is a = 4. This structure is called/3-Mn. The maximum 
symmetry of rods aligned with the cylinder axes is 
p4122. The substitution 3, 0, u results in rod symmetry 
p4322 (note that 14132 has both 41 and 43 axes). 

The new structure is simply derived by removing 
one-half of the cylinders of the/3-W packing. A sketch 
of these structures is shown in Fig. 1 in which the 
Pm3n packing is described using a doubled cell and 
an origin appropriate for Ia3d (as discussed further 
below). 

The SrSi2 cylinder packing 

In the structure of SrSi2 (Janson, Sch~ifer & Weiss, 
1965), the Si atoms are in positions 8(c) of P4132 
x ,x , x ,  with x--0.17.  If x=0 .125  one has the 
invariant-lattice complex (Fischer & Koch, 1983) + Y* 
corresponding to positions 8(a) of 14132 and for 
convenience this slightly idealized description is used 
here. The Si atoms form 31 helices parallel to (111). 
The axes of the helices are derived from the general 
positions of 14132 by the substitution x = I +  u, y = 
2 + u, z -- u. These axes also correspond to the axes of 
a cylinder packing that is derived from garnet by 
removal of eight out of every nine cylinders. For 
unit-diameter cylinders, the cell edge is 6 x 21/2. The 
cylinder axes are I +  u, 2+ u, u; -~+ u,-~- u, u; 2+ u, I +  
u, - u ;  ~ -  u,~+ u, u. The enantiomorphic structure 
with 32 axes is obtained by the substitution 2+ u, I +  
u, u in the general positions. The structure is shown 
in projection in Fig. 2 and a model is displayed in 
Fig. 3(a). 

The ~,-Si cylinder packing 

In the structure of y-Si (Kasper & Richards, 1964) 
with symmetry Ia3, four-coordinated Si atoms are in 
16(c) x, x, x, with x = 0.100. All the atoms fall on (111) 

0 ,2  

1,3 

0 2 0 2 

Fig. 1. Top: the /3-W cylinder packing projected on (001). A 
doubled cell (Ia3d) is outlined. Bottom: the fl-Mn cylinder 
packing projected on (001). A unit cell (I4~32) is outlined. 
Numbers are the elevations of cylinder axes in units of a/4. 
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strings arranged in a garnet packing. This description 
suggests a simple relationship to a b.c.c, lattice as 
follows. The set 16(c) of Ia3 splits into two sets 8(a) 
(again x, x, x) of I2~3 with xl = 0.100 and x2 = 0.400. 
If these parameters are changed to xl = 0.0 and x2 = 
0.25, the structure is that of the b.c.c, lattice. 

An alternative description of the y-Si structure (von 
Schnering & Nesper, 1987) focuses on 31 and 32 
helices of Si atoms again _parallel to (111). If the x 
parameter of 16(a) of Ia3 is changed from 0.1 to 
0.125 the structure will have symmetry Ia3d  and the 
positions correspond to the invariant lattice complex 
Y**, i.e. an intergrowth of ÷ Y* and -Y*.  The axes 
of these helices therefore represent an intergrowth of 
the two enantiomorphic SrSi2 cylinder packings and 
is derived from the garnet packing by removal of 
seven out of every nine cylinders. This structure is 
called the y-Si packing. It is not a stable cylinder 
packing because cylinders of one set are not in contact 
with cylinders of the other set, so that one set can 
move with respect to the other. The two sets of cylin- 
ders are separated by the periodic minimal surface 
Y** [cf. Fig. 6(a) ofvon Schnering & Nesper (1987)]. 
A model displaying the two sets of cylinders is shown 
in Fig. 3(b). 

The most symmetrical form of the packing has 
symmetry l a 3 d  and the cylinder axes are obtained 
by the substitution 2+ u, ½+ u, u for x, y, z in the gen- 
eral positions. For unit-diameter cylinders the cell 
edge is 6 x 21/2. 

Rod packings and symmetry 

The fact that two complementary descriptions of the 
/3-manganese structure were possible reflects the fact 
that cubic space groups that have nonintersecting 
threefold axes also have symmetry-related sets of 

F, ~. 2. A fragment of the SrSi2 cylinder packing projected on (111). 
A hexagonal unit cell is outlined. 

nonintersecting two- or fourfold axes along C001) that 
also do not intersect the threefold axes. Thus in Ia3d, 
positions 32(e), expressed as u, u, u etc., correspond 
to the axes of cylinders parallel to (111) and positions 
48(f) ,  expressed as O, ¼, u etc., correspond to cylinder 
axes parallel to C001). One can therefore interweave 
the two cylinder packings. In particular, the descrip- 
tion by OKA of the garnet structure (of e.g. 
Ca3A12Si3012) as a (111) packing (along u, u, u etc.) 
of nonintersecting rods of AIO6 octahedra alternating 
with (face-sharing) empty 06 trigonal prisms can be 
supplemented by observing that the remaining atoms 
are nonintersecting (001) strings of alternating Si and 
Ca atoms (along O, ~, u etc.) thereby accounting for 
all the atoms in the structure in a particularly satisfy- 
ing manner. 

When cylinders of a packing are replaced by rods, 
the symmetry of the resulting structure may be 
reduced. In Table 1, the possible cubic space groups 
for rod packings and the corresponding rod sym- 
metries are listed. This table should prove useful for 
identifying rod packings in crystal structures and for 
inventing possible new crystal structures. 

Packings of bundles of cylinders 

Other cubic cylinder packings can be derived by 
replacing cylinders of the five packings described so 
far by bundles of cylinders. This is somewhat 
analogous to the process of obtaining rare sphere 
packings from denser ones by replacing spheres by 
groups of spheres (O'Keette, 1991). OKA illustrated 
the procedure in deriving their structure (vii) from 
(vi). 

Possible bundles for stable packings of equivalent 
cylinders are illustrated in Fig. 4. In the fl-W and 
fl-Mn structures, the rods fit into square tunnels and 
have projection symmetry 4ram; possible bundles for 
stable packings are S1, $2, $41, S42 and $8. In the 
SrSi2 packing, rods fit into triangular tunnels and 
have projection symmetry 3m; possible bundles for 
stable packings are T1, T31, T32 and T6. These 
bundles are also possible substitutions in the inter- 
growth structure y-Si. In the garnet structure the rods 
fit into hexagonal tunnels and have projection sym- 
metry 6mm;  stable possibilities are H I ,  H3, H61, 
H62 and H12. In this way one can generate 15 new 
cylinder packings and 3 new intergrowth packings. 
These are summarized and their densities given in 
Table 2. 

Density of cylinder packings 

The problem of packing cylinders with parallel axes 
is the same as that of packing circles on a plane and 
the same fraction of space (the density) is covered. 
The density (O'Keeffe & Hyde, 1980) will range from 
31/27r/(7+4x31/2)=0.3907 for cylinder axes on a 
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(a) 

(b) 

Fig. 3. (a) A model of the SrSi 2 cylinder packing in a framework of a ball-and-spoke model of positions 8(a) of I4132. (b) A model 
of the T-Si intergrowth cylinder packing in a framework of a ball-and-spoke model of the T-Si structure. 
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Table 1. Occurrence of  cylinder-packing axes in the cubic space groups and the associated rod symmetries 

In the table, the headings are the structures and the locat ion of  axes using the origins chosen in International Tables for  Crystallography 
(1983). The individual  entries are the generated Wyckot t  posi t ions and the rod symmetr ies  of  the axes. In the symbols  for the rod-symmetry  
groups,  p refers to the one-dimensional  lattice and the translat ion direction is parallel to e. 

Symmetry  Garnet  y-Si 
group u, u, u ) + u, 2 + u, u 0, ~, u 

la3d e, p3cl h, p312, p3z2 f, p4.c2 
I713d c, p3cl e, p31,p32 d, p~, 
la3 c, p3 e, p31,p32 d, pcc2 
Pa3 c, p3 d, p31,p32 d, plc l  

SrSi2 

/3-W (x2)  

¼, O, u 

h, p4122 , p4322 
e, p2221 
e, p2221 
d, p1121 

/3-Mn 
Symmetry  Garnet  /3-W (x2)  

1 2 2 1 3, 0,  U group u, u, u ~ + u, ~ + u, u ~ + u, x + u, u 0, ~, u ¼, 0, u 

I4132 e, p3 i, p312 i, p322 f, p222 i, p4122 i, p4322 
P4132 q p3 e, p322 e, p3~2 e, p211 e, p41 e, p2221 
P4332 c, p3 e, p322 e, p312 e, p211 e, p2221 e, p43 
1213 a, p3 c, p31 c, p32 b, pl12 c, p2221 c, p222 I 
P213 a, p3 b, p32 b, p31 (b, pl) b, p1121 b, pl121 

Symmetry 
group f l -W (0, ½, u or  ½, O, u) 

Pm3n g or h, p42/mmc 
PT13n h or g, p42c 
P4232 i or j, p4222 
Pm3 f or g, pmmm 
P23 g or h, p222 

3.122 net (the rarest such packing) to 7r/121/2 = 0.9069 
for cylinder axes on a 3 6 net (the densest cylinder 
packing). The packings based on the three regular 
and eight Archimedean tessellations exhaust the 
possibilities for packings with parallel axes. 

The three basic cylinder packings with axes in 
parallel planes described by OKA all have the same 
density, 7r/4 = 0.7854. The cylinders of these packings 
can be replaced by bundles in limited and fairly 
obvious ways that are not further discussed here. 

Densities of the cubic cylinder packings are 
recorded in Table 2. The garnet packing has density 

r .  

S1 $2 $41 $42 $8 

Table 2. Densities of  cubic cylinder packings 

The density is the fraction of  space filled by cylinders. The cylinder 
bundles  are identified in Fig. 4. 

Structure S 1 $2 $4~ $42 $8 
fl-W 0.5890 0.4043 0.5890 0.4043 0.4043 
fl-Mn 0.2945 0.2021 0.2945 0.2021 0.2021 

Structure T1 T31 T32 T6 

CaSi 2 0.0756 0.0911 0.0488 0.0608 
y-Si 0.1511 0.1823 0.0977 0.1215 

Structure H 1 H 3  H6 t  H62 H 12 

Garnet 0.6802 0.3645 0.5468 0.4534 0.3645 

31/2"n ' /8  = 0.6802 and SrSi2 one-ninth of that. The/3-W 
packing has density 37r/16=0.5890 and the fl-Mn 
packing one-half of that. The least dense stable pack- 
ing of equivalent cylinders is conjectured to be the 
SrSi2 packing of T32 bundles in which the fraction 
of space filled is only J 1/27"/'/(56 + 32 x 31/2) = 0.04883. 

T1 T31 T3 2 T6 

O ¢ 0  
H1 H3 H61 H62 H 1 2  

Fig. 4. Cross  sections of  the bundles  of  cylinders discussed in 
the text. 

Concluding remarks 

With hindsight, the basic cubic cylinder packings 
described here should have been 'obvious' as they 
simply represent the location of fourfold and three- 
fold symmetry axes in certain cubic space groups 
(International Tables for Crystallography, 1983). They 
were found the hard way, by looking at crystal struc- 
tures, and they have been found to be of great value 
for describing such structures (see, for example, 
OKA, Nyman et al., 1991). Some at least have been 
illustrated in other contexts; an elegant model of the 
/3-W packing using 432 cylinders has been construc- 
ted by Volten (1968) and a packing of right-triangular 
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prisms with the SrSi2 structure has been illustrated 
by Holden 0971). There is evidence that the SrSi2 
and fl-Mn packings serve as the basis of the cubic 
structures observed in the 'blue phases' of cholesteric 
liquid crystals (Meiboom, Sammon & Berremann, 
1983, and references therein). 

I am grateful to the Beevers Miniature Models Unit 
of the Chemistry Department of Edinburgh Univer- 
sity for the ball-and-spoke frameworks used for the 
models of cylinder packings, which were made by 
Lita R. O'Keeffe. This work was supported by a grant 
(DMR 8813524) from the US National Science 
Foundation. 
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Abstract 

General ideas about symmetries of quasicrystals 
based on simple self-similar tiling models and their 
mathematical formulation in terms of higher- 
dimensional multimetrical space groups find exten- 
sive confirmation in the structure of the decagonal 
A178Mn22 quasicrystal phase. There is an incredible 
richness and variety of symmetries involving, in addi- 
tion to mirror, rotation, translation and screw-rotation 
symmetries, planar and linear scalings as well, 
together with involutions generating those scalings, 
with and without associated nonprimitive,transla- 
tions. The linear parts of these symmetries generate 
a point group of infinite order, not yet fully investi- 
gated but, up to now, consistent with the symmetry 
of a self-similar decagram. The applicability of these 
symmetries to the atomic structure of the quasicrystal 
m178Mn22 observed in nature requires the concept of 
higher-dimensional crystal forms and their projec- 
tions in the physical space and in the internal space, 
respectively. 

0108-7673/92/060884-18506.00 

I. Introduction 

One of the most striking characteristics of the diffrac- 
tion pattern of many quasicrystals is the (discrete) 
scaling invariance of the positions of the Bragg peaks 
(Kuriyama & Long, 1986; Long & Kuriyama, 1986; 
Ostlund & Wright, 1986). That property is also found 
in simple classical models of quasicrystal structures 
described in terms of aperiodic tilings. Examples are, 
in one dimension, the Fibonacci and the octagonal 
chains and, in two and three dimensions, the Penrose 
tiling. The scaling property of the diffraction pattern 
is a consequence of the fact that those tilings are 
invariant with respect to appropriate inflation/defla- 
tion transformations. This means that, by combining 
inflation (deflation) with a rescaling of the distances, 
one gets the original pattern back. 

The aim of the present paper is to demonstrate that 
scaling invariance can occur in quasicrystal struc- 
tures, when described in terms of atomic positions. 
That will be shown by means of the concrete example 
of the decagonal A178Mn22 quasicrystal phase on 
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